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BLACK HOLES FROM BLUE SPECTRA
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ABSTRACT

Blue primordial power spectra with a spectral index n > 1 can lead to a significant
production of primordial black holes in the very early Universe. The evaporation
of these objects leads to a number of observational consequences and a model
independent upper limit of n ≈ 1.4. In some cases this limit is strengthened to
n = 1.3. Such limits may be employed to define the boundary to the region of
parameter space consistent with generalized inflationary predictions. [To appear
in Proceedings of the CASE WESTERN CMB WORKSHOP, April 22-24 1994.
Figures available on request from J.H.Gilbert@qmw.ac.uk]

1. Introduction: Towards an Observational Test of Inflation

The positive detection of anisotropic structure in the temperature distribution
of the Cosmic Microwave Background (CMB) radiation has opened up the possibil-
ity that the predictions of the inflationary scenario may be testable within the near
future1,2. During inflation the scale factor grows exponentially, whilst the Hubble
radius H−1 ∼ 10−23cm remains almost constant. Consequently the physical wave-
length of a quantum fluctuation in the scalar or graviton field soon exceeds H−1 and
its amplitude then becomes ‘frozen’. Once inflation has ended, however, H−1 in-
creases faster than the scale factor, so the fluctuations eventually reenter the Hubble
radius during the radiation- or matter-dominated eras. The fluctuations that exit
around 60 e-foldings or so before reheating reenter with physical wavelengths in the
astrophysically interesting range 1 Mpc - 104 Mpc. Fluctuations in the graviton de-
grees of freedom result in a stochastic background of primordial gravitational waves
that have an amplitude at reentry given by δGW ≈ V/m4

Pl, where mPl is the Planck
mass. Fluctuations in the inflaton field provide the seeds for galaxy formation via
gravitational instability and their amplitude at reentry is δ ≈ V 3/2/(m3

Pl|V ′|). Both
scalar and tensor fluctuations lead to CMB anisotropies.

Since H decreases as the inflaton field rolls down the potential, the amplitude
of the scalar and tensor fluctuations is scale-dependent. This variation is most
conveniently parametrized in terms of the spectral indices, nT and n, defined by
δGW(M) ∝ M−nT /6 and δ(M) ∝ M (1−n)/6, where M is the mass scale associated
with the Hubble radius at the epoch of reentry. In general these spectral indices



are themselves functions of scale. However, scales relevant to large-scale structure
and CMB experiments probe only 9 e-foldings or so of the inflationary expansion,
and since the scalar field must be rolling slowly for inflation to occur in the first
place, these scales correspond to a very small portion of the inflationary potential.
Hence, it is reasonable to suppose that the spectral indices are indeed constant over
the scales of interest3.

When comparing theory with experiment, it is conventional to expand the CMB
temperature fluctuations on the sky in terms of spherical harmonics. The angular
correlation function predicted from theory is then given by an average over all
observer positions:

〈δT (θ)δT (0)〉 =
∞
∑

l=2

2l + 1

4π
ClPl(cos θ), (1)

where the Pl’s are Legendre polynomials and a given multipole l corresponds to an
angular scale θ/1o ≈ 60/l. The Cl’s corresponding to the scalar (Cl,S) and tensor
(Cl,T ) fluctuations are determined once the precise functional forms of the spectra
have been specified. In the limit that |nT | and |n − 1| are constant and small, the
ratio of the l = 2 multipoles is uniquely determined by the tensor spectral index:

R ≡ C2,T

C2,S
≈ −7nT . (2)

This consistency equation is a fairly generic prediction of inflation4. The quan-
tities in this expression are measurable, at least in principle, and it forms the basis
for an observational test of the scenario. If no reionization occurs, experiments
on scales θ ≥ 2o (l ≤ 30) provide a measure of the sum of the scalar and tensor
contributions: Cl = Cl,S + Cl,T . Since the gravitational waves do not produce a
measurable contribution to the CMB anisotropy for θ ≤ 2o, one might hope to de-
termine C2,T and C2,S separately from a combination of small and large angle CMB
experiments. A test of inflation would then require a separate determination of the
tensor spectral index. At present it seems that this requires a direct detection of
the gravitational wave spectrum. Recent calculations5 suggest that the maximum
present-day contribution per octave of the gravitational waves is ΩGWh2 ≤ 7×10−15.
This is too weak to be detectable by the Laser Interferometer Gravity-Wave Obser-
vatories, although the proposed beam-in-space experiment has a peak sensitivity of
ΩGW ≈ 10−16 at 10−4 Hz and may be able to detect such a background.

2. Constraining the Scalar Spectral Index with PBHs

The scalar spectral index is much easier to measure and we would like to have
an expression equivalent to the consistency equation that relates the C2’s to n. In
general, the relationship between nT and n is model dependent, but for the special
case of an exponential potential, we have n − 1 = nT . Hence, in the parameter
space (R, n), this model corresponds to the line R = 7(1 − n). It is important to
note, however, that other families of potentials will lead to different trajectories in



this space. For example, any potential of the form V = V0[1 ± 2π|n − 1|φ2/m2
Pl]

leads to a measurable deviation of n from unity, whilst predicting that R ≈ 0.6 One
could imagine taking all the current candidates for the inflationary potential and
predicting their separate trajectories in this parameter space2. A superposition of
these paths would then define a target that represented a generalized prediction
of inflation in some sense. The problem with this approach, however, would be in
deciding which models should be included in the target. Whilst a given model may
appear to be natural to one person, someone else may deem it unnatural.

It seems to us that this subjective element in the testing procedure must be
eliminated if such an approach is to be developed further. To accomplish this it
is necessary to search for model-independent constraints on the parameters R and
n. Recently an upper limit on the spectral index was derived from considering the
formation and subsequent evaporation of primordial black holes (PBHs)7. This limit
is independent of any gravitational wave contribution to the CMB anisotropy and
therefore defines a boundary to the observational target of inflationary predictions
in (R, n) space.

The idea behind the argument is rather simple. During inflation the first scales
to leave the Hubble radius are the last to come back in and this implies that the very
last fluctuation to leave is the first to return. In the simplest case, the fluctuation
on this scale will be spherically symmetric and Gaussian distributed with an rms
amplitude given by δ(te), where te ∼ H−1 is the time when inflation ends. In some
regions of the post-inflationary Universe, the fluctuation will be sufficiently large
that the collapse of a local region into a black hole will become inevitable. The
higher the rms amplitude the higher the fraction of the Universe forming PBHs.
The observational consequences of the evaporation of these black holes then leads
to upper limits on the number that may form and hence on the magnitude of δ(te).
An upper limit on n is therefore derived by normalizing the power spectrum on the
quadrupole scale, MQ ∼ 1057g, and assuming that the spectral index is constant.

PBHs are never produced in sufficient numbers to be interesting if n < 1, but
they could be if the spectrum is ‘blue’ with n > 1. The precise form of the con-
straints depends crucially on how the Universe is reheated, however, and we now
proceed to discuss the separate cases of efficient and inefficient reheating.

2.1. Efficient Reheating

When an overdense region with equation of state p = γρ stops expanding, it
must have a size greater than

√
γ times the horizon size in order to collapse against

the pressure and this requires that δ(te) > γ. It follows that the probability of a
region of mass M forming a PBH is8

β0(M) ≈ δ(M) exp

(

− γ2

2δ2(M)

)

. (3)

Because of the exponential expansion PBHs that form before or during inflation
have no observational consequences. Furthermore, if the reheating process is very



efficient, the false vacuum energy is rapidly converted into relativistic particles with
a reheating temperature TRH/TPl = (te/tPl)

−1/2. The mass of a PBH forming at
this time is MRH/mPl ≈ tRH/tPl and once it has formed, a PBH of this mass will
evaporate at a time tevap ≈ (MRH/mPl)

3tPl. Eq. (3) then implies that for a blue
spectrum, β0(M) decreases exponentially for M > MRH, so we may regard the PBH
mass spectrum as effectively being a δ-function at MRH.

The constraints on β0(M) in the range 1010g ≤ M ≤ 1017g were recently
summarized9. In particular, PBHs with an initial mass ∼ 1015g would evaporate at
the present epoch and may contribute appreciably to the observed gamma-ray and
cosmic-ray spectra at 100 MeV. On the other hand, 1010g PBHs have a lifetime ∼
1 sec and, if produced in sufficient numbers, their evaporations would lead to the
photodissociation of deuterium immediately after the nuclesynthesis era. PBHs of
mass slightly below 1010g could alter the baryon-to-photon ratio just prior to nucle-
osynthesis. In our paper7 we consider the constraints on β0(M) below 1010g. In this
region there is a potentially stronger constraint on the spectral index if evaporating
PBHs leave stable Planck mass relics10. Although the formation of such objects has
not been proved conclusively, it would be surprising if quantum gravity effects did
not become important once the PBH had evaporated down to the Planck mass and
various arguments have been developed in the literature suggesting the formation
of such objects is likely7.

To derive the observational constraint from PBH relics one proceeds as follows: a
lower limit on MRH is derived by assuming that the observed quadrupole anisotropy
is due entirely to gravitational waves. This implies5 that the expansion rate of the
Universe during the last 60 e-foldings of inflation cannot exceed 3 × 10−5mPl and
leads to an upper limit on the reheat temperature of ∼ 1016 GeV. This corresponds
to a minimum mass ∼ 1g. The observational constraint from the relics derives from
the fact that they cannot have more than the critical density at the present epoch,
i.e. Ωrel < 1. The precise form of the constraint depends on whether the evaporating
PBHs dominate the energy density of the Universe before they evaporate. Since
the ratio of PBH density to radiation density increases as t1/2, the PBHs do not
dominate at evaporation if β0 < (MRH/mPl)

−1. If this condition is satisfied, the
constraint that Ωrel does not exceed unity becomes

β0(M) < 10−27
(

M

mPl

)3/2

. (4)

If, on the other hand, the PBHs dominate the density at evaporation, most of the
background photons derive from the PBHs and the constraint becomes M > 106g.
In other words, only relics formed from PBHs smaller than 106g can contribute
significantly to the current energy density and above this critical mass the entropy
constraint takes over.

We have completed a detailed analysis and derived the constraints on δ(MRH)
for all mass scales above 1g. These results are illustrated in Figure 1. It is seen
that the strongest limit on the spectral index derives from the relic constraint and



by combining Eqs. (3) and (4) one finds that

δ(MRH) < 0.13
[

17 − log10

(

MRH

mPl

)]−1/2

. (5)

If we normalize on the quadrupole scale, MQ, the rms amplitude on a smaller scale
M is δ(M) = δQ(M/MQ)(1−n)/6, where δQ ≈ 3.8 × 10−6. Hence, we conclude from
Eq. (5) that the limit on the spectral index is n ≤ 1.4 for MRH ≈ 1g, corresponding
to a reheat temperature ∼ 1016GeV, and n ≤ 1.5 for MRH ≈ 106g, corresponding to
TRH ∼ 1014GeV. The constraints associated with higher masses (i.e. lower reheat
temperatures) are calculated by a similar procedure and are summarized in Figure
2.

Fig. 1. The constraints on the rms amplitude of the scalar fluctuation spectrum immediately after
inflation if the equation of state is radiation-like (γ = 1/3). The origin of the constraints above

1010g is summarized by Carr and Lidsey9. If PBHs do not leave behind stable relics after evapo-
ration, the strongest upper bound on the spectral index is given by the dashed line which joins the
COBE/DMR point and the deuterium constraint at 1010g. This limit applies for reheat temper-

atures ∼ 109GeV. If relics are formed, the limit is strengthened at higher reheat temperatures as
indicated.



2.2. Inefficient Reheating

Thus far we have assumed that the reheating of the Universe to relativistic
particles occurs on a timescale much less than H−1. However, when inflation ends
by means of a second-order phase transition, the scalar field undergoes coherent
oscillations in the potential minimum from the time t1 ∼ H−1 until it decays at
a time t2 ∼ Γ−1, where Γ is its decay width. During this interval, the Universe
is effectively dominated by a dust-like fluid11 with γ = 0, and Eq. (3) does not
apply. PBHs will still form in this case, but the fraction of the Universe going into
PBHs is now determined by the probability that regions are sufficiently spherically
symmetric to collapse within their Schwarzschild radius. This fraction is given by12

β(M) ≈ 2 × 10−2[δ(M)]13/2 (6)

and the observational constraints on the probability of PBH formation are altered
because they now have an extended mass spectrum. The range over which this
spectrum applies is defined by M1 ≤ M ≤ Mmax, where M1 is the horizon mass im-
mediately after inflation and Mmax is the mass of a configuration that just detaches
itself from the universal expansion at t2. It is determined implicitly by12

Mmax = [δ(Mmax)]
3/2
(

t2
tPl

)

mPl. (7)

The constraints on β(M) are related to the associated constraints on β0(M) via the
relation

β(M) = β0(M)
(

t2
tPl

)1/2 ( M

mPl

)−1/2

. (8)

This is a useful expression because it implies that the limits on PBH formation
during the dust phase can be calculated directly from the constraints which apply
if there is no dust phase. We first assume t1 is fixed and vary the epoch t2 = Γ−1 at
which the dust era ends. For a given value of t2, the mass range of PBHs forming
during the dust phase goes from M1 to the mass given by Eq. (7) and for each
value of M the constraint on β(M) is given by Eq. (8). The corresponding limit
on δ(M) follows from Eq. (6) and the limit on n is derived by normalizing on the
quadrupole scale as before. The reheat temperature is TRH ≈ (ΓtPl)

1/2mPl and an
upper limit on ΓtPl follows from the requirement that baryogenesis must proceed
after reheating. It is generally accepted that the lowest temperature for which the
observed baryon asymmetry may be generated is the electroweak scale, ∼ 103GeV,
corresponding to ΓtPl ∼ 10−30.

The new constraints on the spectral index are also shown in Figure 2. For a
relatively short dust phase, only the relic limit will be altered, since PBHs above
1010g will not form during the dust phase. For lower reheat temperatures, however,
more massive PBHs form and provide the strongest constraint. The deuterium
constraint applies for 10−17 ≥ ΓtPl ≥ 10−23 and the gamma-ray limit for 10−23 ≥



ΓtPl ≥ 10−30. From this figure we arrive at an upper limit of n = 1.4 if PBHs form
relics and there is a dust-phase after inflation.

Fig. 2. Illustrating the constraints on the spectral index arising from the overproduction of primor-
dial black holes, the shaded area being excluded. The lower line applies if there is a dust phase
immediately after inflation, in which case the ordinate is log10ΓtPl, the upper line if there is no
dust phase in which case it is log10(tPl/te). The constraints depend on the reheat temperature

TRH ≈ 1018(ΓtPl)
1/2GeV, where Γ is the decay width of the scalar field that decays into relativis-

tic particles. The n-independent upper and lower limits on the decay width arise from assuming the
COBE/DMR detection is due entirely to gravitational waves (shaded line) and from requiring that
baryogenesis can only proceed above the electroweak scale (dashed line). The dotted horizontal line

indicates the CMB distortion limit of Hu et al 13. For reheat temperatures above TRH ≈ 109.5GeV
the most important constraint arises from the requirement that any Planck mass relics left over
from the final stages of PBH evaporation should have less than the critical density at the present
epoch. For lower reheat temperatures, more massive PBHs may form and the strongest constraints
then arise from the photodissociation of deuterium by evaporating 1010g PBHs, from the observed
gamma-ray background in the energy range 0.1 − 1 GeV, or from the distortions of the CMB.

3. Conclusion

One criticism of these limits is that they assume the spectral index is constant
over the full range of scales. To answer this point we note that the general inflation-



ary potential leading to spectra with constant spectral index n > 1 is a combination
of trigonometric functions with a Taylor expansion of the form9

V = V0

[

1 + 2π(n − 1)
φ2

m2
Pl

]

. (9)

Any potential that leads to n > 1 will have a Taylor expansion of this form. It
follows that, as the field rolls towards the minimum, the approximation of Eq. (9)
to the general trigonometric potential becomes more accurate and so the variations
in the spectral index become smaller. Consequently, one need only show that the
spectral index is effectively constant over the scales corresponding to large-scale
structure (53-60 e-foldings from the end of inflation). It is straightforward to show
that this is the case7.

We conclude that the formation of PBHs from quantum vacuum fluctuations
immediately after inflation constrains the scalar spectral index to be less than 1.4.
It is important to emphasize that, because our limit spans the large range of scales
from ∼ 1g to ∼ 1057g, (for comparison, all large-scale structure measurements span
only 10 decades of scale), it is essentially independent of the errors that arise in the
COBE normalization from possible tensor contributions, cosmic variance and the
effect of the Doppler peak on the low multipole anisotropies. Moreover, since we
have normalized on COBE scales, the limit is also independent of the precise form of
dark matter and hence the bias parameter. In effect, once the COBE normalization
is specified, the limit is independent of the cosmological model, although it does
assume that Ω0 = 1, as predicted by most inflationary models. Therefore this limit
can be employed to define a boundary to the target of inflationary predictions in
(R, n) space.

4. Acknowledgements

JHG and JEL are supported by the Science and Engineering Research Council
(SERC), UK. JEL is supported at Fermilab by the DOE and NASA under Grant
No. NAGW-2381. We would like to thank R. C. Caldwell, A. R. Liddle, K. Maeda,
A. Polnarev and D. Scott for fruitful discussions about this work. JEL thanks L.
M. Krauss for organizing a very enjoyable and informative workshop.

5. References

1. For a recent review see G. F. Smoot, these proceedings.
2. P. J. Steinhardt, these proceedings.
3. M. S. Turner, Phys. Rev. D48 (1993) 5539.
4. R. L. Davies, H. M. Hodges, G. F. Smoot, P. J. Steinhardt and M. S. Turner,

Phys. Rev. Lett. 69 (1992) 1851; L. M. Krauss and M. White, Phys. Rev.

Lett. 69 (1992) 869; A. R. Liddle and D. H. Lyth, Phys. Lett. B291 (1992)



391; J. E. Lidsey and P. Coles, Mon. Not. R. astron. Soc. 258 (1992) 57P;
F. Lucchin, S. Matarrese and S. Mollerach, Ap. J. Lett. 401 (1992) 49; D.
S. Salopek, Phys. Rev. Lett. 69 (1992) 3602; T. Souradeep and V. Sahni,
Mod. Phys. Lett. A7 (1992) 3541.

5. M. S. Turner, M. White and J. E. Lidsey, Phys. Rev. D48 (1993) 4613; A.
R. Liddle, Phys. Rev. D49 (1994) 3805.

6. J. E. Lidsey, Mon. Not. R. astron. Soc. 266 (1994) 489.
7. B. J. Carr, J. H. Gilbert and J. E. Lidsey, ‘Black Hole Relics and Inflation:

Limits on Blue Perturbation Spectra’, submitted to Phys. Rev. D (1994).
8. B. J. Carr, Ap. J. 205 (1975) 1; B. J. Carr, in Observational and Theoretical

Aspects of Relativistic Astrophysics and Cosmology eds. J. L. Sanz and L. J.
Goicoechea (World Scientific, Singapore, 1985).

9. B. J. Carr and J. E. Lidsey, Phys. Rev. D48 (1993) 543.
10. J. D. Barrow, E. J. Copeland, and A. R. Liddle, Phys. Rev. D46 (1992)

645.
11. M. S. Turner, Phys. Rev. D28 (1983) 1243; M. Yu. Khlopov, B. A.

Malomed and Ya. B. Zel’dovich, Mon. Not. R. astro. Soc. 215 (1985)
575.

12. M. Yu. Khlopov and A. G. Polnarev, Phys. Lett. B97 (1980) 383; A. G.
Polnarev and M. Yu. Khlopov, Sov. Astron. 26 (1983) 391; A. G. Polnarev
and M. Yu. Khlopov Sov. Phys. Usp. 28 (1985) 213.

13. W. Hu, D. Scott, and J. Silk, “Power Spectrum Constraints from Spectral
Distortions in the Cosmic Microwave Background,” To appear, Ap. J. Lett.

(1994).


